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Abstract. The next-to-leading order cross section for the inclusive production of charm quarks in γγ
collisions is calculated as a function of the transverse momentum pT and the rapidity y in approaches
using massive or massless charm quarks. For the direct cross section we derive the massless limit from
the massive theory with the result that this limit differs from the massless version with MS factorization
by finite corrections. Subtracting or adding these corrections allows us to compare the two approaches on
equal footing. We establish massless and massive versions with 3 and 4 initial flavours which are shown
to approach the massless approximations very fast with increasing pT . With these results we calculate the
inclusive D∗± cross section in γγ collisions using realistic evolved fragmentation functions with appropriate
factorization scales and compare with recent data for dσ/dpT from three LEP collaborations after single-
and double-resolved contributions have been added.

1 Introduction

Recently the three LEP collaborations, ALEPH [1], L3 [2]
and OPAL [3] have presented data for inclusive D∗± pro-
duction in two-photon collisions at e+e− center-of-mass
energies close to

√
S = 189 GeV. Besides the total cross

section σ for γ + γ → D∗ + X also the differential cross
sections with respect to the D∗ transverse momentum,
dσ/dpT , and the pseudo-rapidity, dσ/dη, have been mea-
sured.

In γγ collisions, where both photons are on-shell, each
of the two photons can behave as either a point-like or
a hadron-like (or resolved) particle. Therefore one distin-
guishes in such collisions three production channels called
direct (both particles interact point-like), single-resolved
(one γ is point-like, the other hadron-like) and double-
resolved (both photons are hadron-like). The resolved con-
tributions require the knowledge of parton densities in the
photon, whereas the production via two direct photons is
free of such non-perturbative input. The different channels
mix in higher orders of perturbation theory and thus the
distinction between the direct and resolved contributions
becomes scale and scheme dependent: only the sum of all
three contributions is a physical cross section.

∗ Supported by Bundesministerium für Forschung und Tech-
nologie, Bonn, Germany, under Contract 05 HT9 GA3, and
by EU Fourth Framework Program Training and Mobility
of Researchers through Network Quantum Chromodynamics
and Deep Structure of Elementary Particles under Contract
ERBFMRX–CT98–0194 (DG12 MIHT).

The transverse momentum distribution dσ/dpT for the
inclusive production of D∗± mesons is characterized by
two distinct scales, the mass m of the charmed quark and
the transverse momentum pT of the D∗ or charm-quark.
Depending on the ratio pT /m, two different approaches
for next-to-leading order (NLO) calculations in perturba-
tive QCD have been used for a comparison with the ex-
perimental data [1–4]. In the so-called massless scheme,
the charm quark is considered as an active flavour in the
photon [5]. In these calculations, it is assumed that four
flavours q = u, d, s and c are present in the photon, de-
scribed by corresponding distribution functions, and all
quarks are taken to be massless. The charm-quark is also
an in-going parton originating from the photon in the case
of the resolved contributions to the cross section and it
fragments into the D∗ meson similarly as the produced
u, d, s quarks and the gluon g. The predictions of this
approach are expected to be valid in the region of large
transverse momenta pT � m. In this scheme, calcula-
tions for the small pT region are not reliable. The cross
section diverges in the limit pT → 0 and the total cross
section can not be predicted. Following the usage in deep
inelastic charm production [6] we shall refer to this as the
zero-mass (ZM) 4-flavour scheme (it corresponds to the
“massless charm scheme”introduced in [7] in connection
with charm production in γp collisions).

The other scheme, in which cross sections for γγ →
D∗ X have been calculated [8], is the so-called massive
charm scheme [7]. In the massive charm scheme the num-
ber of active massless flavours in the initial state for the
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resolved contribution is equal to nf = 3 and the charm
quark is assumed to be massive. The massive c quark ap-
pears only in the final state. In this scheme the charm
mass, m � ΛQCD, acts as a cutoff for the initial and final
state collinear singularities, and sets the scale for the per-
turbative calculations. The cross section factorizes into a
partonic hard scattering cross section multiplied by light
quark and gluon densities in the case of the resolved con-
tributions. In leading order (LO), the direct production is
described by the partonic reaction γ+γ → c+ c̄ while the
resolved contributions involve the channels γ + g → c+ c̄
(single resolved) and q + q̄ → c + c̄ and g + g → c + c̄
(double resolved), where q are the light (massless) quarks
q = u, d, and s. This approach has the advantage that
not only the various distributions, like in rapidity and/or
transverse momentum, can be predicted in the full range
of pT but also the total cross section.

One might expect that the massive approach is rea-
sonable only in those kinematical regions where the mass
m and any other characteristic scale like pT are approx-
imately of the same magnitude and significantly larger
than ΛQCD. Under these circumstances the charm mass
can be used to set the renormalization scale entering the
quark-gluon coupling αs as well as the factorization scale
needed to evaluate the quark and gluon densities of the
photon. In NLO, terms ∝ αs ln(p2T /m2) arise from col-
linear emission of the gluon by charmed quarks at large
transverse momentum or from almost collinear branching
of photons or gluons into cc̄ pairs. These terms are not ex-
pected to affect the total production rates, but they might
spoil the convergence of the perturbation series and cause
large scale dependencies of the NLO result at pT � m.1
In the massive approach the prediction of differential cross
sections is thus limited to a rather small range of pT � m.
Nevertheless, predictions of this approach have been com-
pared to data up to pT � 10 GeV [8].

The proper procedure for pT � m is to absorb po-
tentially large logarithms into distribution and fragmen-
tation functions where they can be resummed by virtue
of the Altarelli-Parisi equations. To implement this proce-
dure one needs a charm contribution in the photon parton
distributions (PDF) and a fragmentation function (FF)
for the transition c → D∗ (or any other charmed me-
son or baryon). Logarithms ∝ ln(M2/m2) defined with
the factorization scale M are absorbed into these distri-
bution and fragmentation functions and remaining terms
∝ ln(p2T /M2) are of order O(1) for the appropriate choice
M � pT . For sufficiently large pT the cross sections calcu-
lated with this finite charm mass method including four
active flavours must approach the results described earlier
with the zero-mass 4-flavour scheme [5]. Since m �= 0, it
is reliable also for intermediate pT > m, where most of
the experimental data have been obtained so far, rather
than only for pT � m. We shall call this scheme with
a massive charm quark, but with terms proportional to
αs ln(M2/m2) subtracted, the NLO 4-flavour scheme. The

1 Similar potentially large terms ∝ αs ln(Q2/m2), Q be-
ing the photon virtuality, appear in the calculation of charm
electro-production cross sections at next-to-leading order [6].

scheme described above, where this subtraction is not per-
formed and only three light active flavours are considered
will be called the NLO 3-flavour scheme. This latter heavy
quark mass approach is also often referred to as the fixed-
flavour number scheme [6] in connection with heavy quark
electro-production. In the following we shall not use the
term “massive charm scheme” any more, since it is am-
biguous. Instead we shall refer either to the NLO 3-flavour
or the NLO 4-flavour approach.

The relation of these three approaches for the process
γγ → D∗X has not been investigated in detail yet. In
particular, the relation between the ZM 4-flavour and the
NLO 4-flavour scheme, e.g. the question, in which range
of pT values the ZM 4-flavour scheme is a good approxi-
mation to the NLO 4-flavour scheme, has not been stud-
ied so far. Also, it is of interest to know, for which pT the
NLO 3-flavour and the NLO 4-flavour scheme produce ap-
proximately the same results. So far only differential cross
sections calculated in the ZM 4-flavour and in the NLO
3-flavour scheme have been compared [9]. It was found
that the two approaches differ in the definitions and rel-
ative contributions of the direct and resolved terms, but
essentially agree in their sum. However, in this compari-
son [9], the ZM 4-flavour result was modified in so far as
terms containing αs ln(M2/m2) have been taken into ac-
count not only at order O(αs), but resumming them with
the Altarelli-Parisi equations in the so-called perturbative
fragmentation function approach, in which initial condi-
tions for the FF’s were taken from perturbation theory
[10]. This made it difficult to pin down the finite charm-
mass effects present in the NLO 3-flavour scheme.

It is the purpose of this work to fill this gap and present
a comparison of results obtained in the ZM and the m �= 0
4-flavour schemes. We will identify terms in the massive
theory surviving in the limit m → 0 which are not present
in the ZM approach where the quark mass is put to zero
from the beginning. These terms describe final-state in-
teractions and can be interpreted as a perturbative frag-
mentation function describing the transition from massless
to massive charm quarks. Only after correcting for this
difference by subtracting the final-state interaction terms
from the massive theory (or adding them to the massless
theory) one can expect that both theories approach each
other in the large-pT limit. This way, the m = 0 and the
m �= 0 theories can be considered on the same footing and
a comparison will be sensible. In addition we shall com-
pare also to the NLO 3-flavour scheme in order to find
out the difference at small and intermediate pT . We shall
concentrate in this comparison on the direct cross section
for γγ → D∗ X, since this is the dominant part. A similar
comparison for the single-resolved and the double-resolved
cross section is left to a later study. The merging of the
massive fixed-order approach and the resummed massless
fragmentation approach has been investigated in [11] for
hadron-hadron and photon-hadron scattering. In principle
one can infer from these results the corrections due to the
finite charm mass for the single- and double-resolved cross
sections. This work, however, as well as the calculations
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for γγ reactions in [9], is based on the perturbative FF’s
[10] approach, which is too restrictive for our purpose.

The outline of our work is as follows. In Sect. 2, we
shortly describe the formulae which are used to calculate
the cross section for γ + γ → c/c̄ + X with m �= 0. We
derive from these cross sections the limit m → 0 and com-
pare it with the results of the zero-mass theory which can
be found in the literature. This defines the necessary sub-
tractions in the massive theory so that it approaches the
massless theory in the limit of large pT . Section 3 contains
the numerical results for the comparison of the two theo-
retical approaches based on different choices for the scales
at which finite initial and final state terms are subtracted
or absorbed into non-perturbative PDF’s of the photon or
FF’s of the charm quark. In this section we also present
comparisons to the 3-flavour scheme. After adding single-
and double-resolved contributions we compare the results
for the m �= 0 and the m = 0 4-flavour schemes to re-
cent experimental data from LEP II. Our conclusions are
summarized in Sect. 5.

2 Decomposition of the LO
and NLO differential cross section

2.1 Leading-order cross section

We first consider the process

γ(p1) + γ(p2) → c(p3) + c̄(p4) + [g(k)] (1)

where pi, i = 1, 2, 3, 4 and k denote the momenta of the
two incoming photons and the outgoing c, c̄ quarks and a
possible gluon (in square brackets), which is present when
we consider the NLO corrections. Below we will describe
the procedure needed to obtain differential cross sections
for D∗ production in γγ scattering. We have the following
invariants

s = (p1 + p2)2, t = T − m2 = (p1 − p3)2 − m2,

u = U − m2 = (p2 − p3)2 − m2
(2)

and

s2 = S2 − m2 = (p1 + p2 − p3)2 − m2 = s+ t+ u . (3)

It is customary to define the dimensionless variables

v = 1 +
t

s
, w = − u

s+ t
(4)

so that

t = −s(1 − v), u = −svw, s2 = sv(1 − w) . (5)

The leading-order cross section is

dσLO
dvdw

= c(s)δ(1 − w)
(

t

u
+

u

t
+ 4

sm2

tu

−4
(
sm2

tu

)2)
(6)

where

c(s) =
2πNCα2e4c

s
. (7)

NC is the number of quark colours and ec is the electric
charge of the charm quark, ec = 2/3. From (6) the finite
charm mass corrections are clearly visible. In the next sec-
tion we shall show numerical results explicitly.

2.2 The next-to-leading-order cross section

The NLO corrections consist of two parts, the virtual cor-
rections to γ + γ → c+ c̄ and the gluonic bremsstrahlung
contributions γ + γ → c + c̄ + g. These NLO corrections
have been calculated by several groups [12–14,9]. Only in
[13] explicit formulae for the separate contributions due
to one-loop diagrams and due to bremsstrahlung contri-
butions are given in a form which allows us to derive the
massless limit (m → 0). The results in [13] are subdivided
into three parts, the vertex plus self-energy cross section
dσVSE, the virtual box cross section dσBox and the gluon
bremsstrahlung cross section dσBr, so that the NLO single-
inclusive differential cross section dσ/dvdw is decomposed
as follows

dσNLO
dvdw

=
dσVSE
dvdw

+
dσBox
dvdw

+
dσBr
dvdw

. (8)

The three parts in (8) have according to [13] the following
structure:

dσVSE
dvdw

=
C(s)
4

δ(1 − w)

{
2A1

(
4
[
ζ2 − Li2

(
T

m2

)]

×
(
1 + 3

m2

t

)
− ln

(−t

m2

)

×
(
8 − 6

t

T
− t2

T 2

)
− 2 − t

T

)

+A2 ln
(−t

m2

)
+A3

[
Li2

(
T

m2

)
− ζ2

]

+A4 + (t ↔ u)

}
(9)

and
dσBox
dvdw

=
CFαs

π

dσLO
dvdw

2m2 − s

sβ
{−2 lnx lnβ

+2Li2(−x) − 2Li2(x) − 3ζ2}

+
C(s)
4

δ(1 − w)

{
−8B1

2m2 − s

sβ
lnx ln

(−t

m2

)

+2
B2

β

(
lnx

[
4 ln(1 + x) − lnx − 4 ln

(−t

m2

)]

+ 4Li2(−x) + 2ζ2

)

+2B3 ln2 x+ 4
B4

β
lnx+ 4B5 ln

(−t

m2

)
(10)

+8B6 ln
(

T

m2

)
+ 4B7ζ2 + 4B8 + (t ↔ u)

}
.
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In (10)

β =
√
1 − 4m2/s , x =

1 − β

1 + β
(11)

and in (9) and (10) ζ2 = π2/6 and the normalisation

C(s) = c(s)
CFαs

2π
. (12)

The quantities Ai and Bi are functions of m2, s, t and
u. They are given in appendix B of [13] and will not
be repeated here. The contributions (9) and (10) contain
also infrared divergent terms proportional to ε−1 (2ε =
4 − n) in dimensional regularization with dimension n.
They are omitted since they cancel against terms in the
bremsstrahlung cross section. How these terms are dis-
tributed in dσVSE and dσBox can be inferred from [13].

The last term in (8) looks more complicated. Accord-
ing to [13] it can be written in the following form:

dσBr
dvdw

= C(s)

{
svs2
4S2

(
s2(s+ u)

4S2
e2 +

2S2
s2(s+ u)

ln
S2
m2 e3

+
4S2

m2(s+ u)2
e4 + I5e5 + I8e8 + I9e9 + I10e10

+I13e13 + I15e15 + I16e16 + (t ↔ u)
)

+
1

(1 − w)+
1

4S2

(
ẽ1 +

2S2
ỹ

ln
T + U − ỹ

T + U + ỹ
ẽ6

+
4S2
m2 ẽ7 + s2I11ẽ11 + s22I12ẽ12 + s22I14ẽ14

+(t ↔ u)

)}
+

CFαs

2π
dσLO
dvdw

1
sβ

×
{
(2m2 − s)

(
4 lnx ln

sv

m2 + 2 lnx

−2
[
Li2

( −4β
(1 − β)2

)
+ ln2 x

])

+2sβ
[
1 − 2 ln

sv

m2

]}
. (13)

Here we used ỹ =
√

(t+ u)2 − 4m2s and the coefficients
ẽ1, e2, e3, e4, e5, ẽ6, ẽ7, e8, e9, e10, ẽ11, ẽ12, e13, ẽ14, e15
and e16 are again functions of the invariants s, t, u, s2 and
of m2. I5 to I16 are integrals over angles, which have been
evaluated in [13] and are written down in appendix C of
this reference.

The cross sections dσVSE and dσBox are proportional
to δ(1 − w). The bremsstrahlung cross section dσBr con-
tains terms proportional to δ(1−w) and to

(
1

1−w

)
+
. Other

contributions are finite for w → 1, as long as m �= 0. In
the limit m → 0 they give rise to additional terms propor-
tional to δ(1−w),

(
1

1−w

)
+
, as well as terms proportional

to
(
ln(1−w)
1−w

)
+
.

A second approach where the mass of the charm quark
is neglected from the beginning was worked out in [15] and
later confirmed in [16]. With m = 0, collinear singulari-
ties appear. They are regularized by dimensional regular-
ization. In order to understand the differences of the two
approaches, we have evaluated (9), (10) and (13) in the
limit m → 0. Special care must be exercised in order to
recover all the terms proportional to δ(1 − w),

(
1

1−w

)
+

and
(
ln(1−w)
1−w

)
+
. We write the result in a form which has

been introduced in the calculation for massless quarks in
[16]. This will allow us to identify the terms which come
in addition to the massless theory in the MS factoriza-
tion scheme [16]. The LO cross section for m = 0 has the
simple form

lim
m→0

dσLO
dvdw

= c(s)δ(1 − w)τ0(v) with

τ0(v) =
v

1 − v
+

1 − v

v
. (14)

The decomposition of the NLO cross section in the limit
m → 0 has the form

lim
m→0

dσNLO
dvdw

=
(
c1 + ˜̃c1 ln

m2

s

)
δ(1 − w)

+
(
c2 + ˜̃c2 ln

m2

s

)(
1

1 − w

)
+

+c3

(
ln(1 − w)
1 − w

)
+

+c5 ln v + c6 ln(1 − vw)
+c7 ln(1 − v + vw) + c8 ln(1 − v)
+c9 lnw + c10 ln(1 − w) + c11

+
(
c̃11 + ˜̃c11

)
ln

m2

s

+c12
ln(1 − v + vw)

1 − w
+ c13

lnw

1 − w

+c14
ln( 1−v

1−vw )
1 − w

. (15)

The coefficients c1,... c14, ˜̃c1, ˜̃c2, c̃11, and ˜̃c11 are either
functions of v alone or of v and w. We obtained the fol-
lowing results for them:

c1 = C(s)
(
ln2(1 − v)

[
2
v
+

1
1 − v

− 1
]

+ ln(1 − v)
[

3
1 − v

− 1
]

+ ln2 v
[

3
1 − v

+
2
v

− 3
]

+ ln v

[
− 3
2(1 − v)

+
3
2v

+ 2
]

+
(
4ζ2 − 7

2

)
τ0(v)

)
+∆c1 , (16)
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where

∆c1 = C(s)
(−2 ln2 v − 2 ln v + 2

)
τ0(v) ; (17)

˜̃c1 = C(s)
(

−2 ln v − 3
2

)
τ0(v) ; (18)

c2 = C(s)
(
2 ln v − 3

2

)
τ0(v) +∆c2 , (19)

where

∆c2 = C(s) (−4 ln v − 2) τ0(v) ; (20)

˜̃c2 = −2C(s)τ0(v) ; (21)

c3 = 2C(s)τ0(v) +∆c3 , (22)

where

∆c3 = −4C(s)τ0(v) ; (23)

c5 = C(s)

(
2v(1 − v)
(1 − vw)3

− 2v
(1 − vw)2

+
v

(1 − v)(1 − vw)
+

2v(1 − v)
1 − vw

− 2v
1 − v + vw

− 2
v

− 4v +
3
vw

− 2
w

+

2v
w

+ 2w + 4vw − 2w
1 − v

+
2w
v

)
+∆c5 , (24)

where

∆c5 = C(s)
(

2v
1 − v

+
2v2w
1 − v

+
4
w

− 2v
w

− 4
vw

+
4v

1 − v + vw

)
; (25)

c6 = 2C(s)
(

1
v(1 − v)w

(
2v3 − 2 − 3v2 + 5v

)
+

1
1 − v

(
v2w − 2v2

))
; (26)

c7 = −C(s)
(

4v
1 − v + vw

+
2
vw

)
; (27)

c8 =
2C(s)
vw

(
1 + (1 − v)2

)
; (28)

c9 = − 2C(s)
v(1 − v)w

(
v3w2 + v2w − (1 − v)

)
; (29)

c10 = c5 +
C(s)

w(1 − v)
(
4v2w − 2v2w2 − 2v2 − 2

)
; (30)

c11 = C(s)

(
2v

1 − v + vw
− 8v(1 − v)

(1 − vw)3
+

7v
(1 − vw)2

− v

(1 − v)(1 − vw)
(
2 − 7v + 3v2

)
+4v − 2 +

7
v
+

1
1 − v

−w

(
v − 2 +

8
v
+

2
1 − v

)
+

2v
w

− 1
w

+
1

2vw

)

+∆c11 , (31)

where

∆c11 = C(s)
(

2v
1 − v + vw

+
1

1 − v
+

w

1 − v

−w(1 + v) +
2
w

− v

w
− 2

vw
− 1
)

; (32)

c̃11 = C(s)
(

− 2v(1 − v)
(1 − vw)3

+
2v

(1 − vw)2

− v

(1 − v)(1 − vw)
− 2v(1 − v)

1 − vw

− v

1 − v
+ 4v +

2
v

− 1
vw

− v

w
− 2vw

+
v2w

1 − v
− 2w

v

)
; (33)

˜̃c11 = C(s)
(

2v
1 − v + vw

+
v

1 − v
− 1 + (1 − v)2

vw

+
v2w

1 − v

)
; (34)

c12 = − 2C(s)
v(1 − v)

(1 + 2v(1 − v)) ; (35)

c13 = 2C(s)
1 + v2

v(1 − v)
; (36)

c14 = 2C(s)
1 + (1 − v)2

v(1 − v)
(37)

By comparing with appendix A of [16] we obtain agree-
ment if we set in (15) the factorization scales M2

I = M2
F =

m2 and put ∆c1 = ∆c2 = ∆c3 = ∆c5 = ∆c11 = 0 in the
formulae above. This means, that the m → 0 limit of the
NLO correction as derived in [13] agrees with [16] with
initial factorization scale M2

I = m2 and final state fac-
torization scale M2

F = m2 and all ∆ci terms put to zero.
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Denoting the ZM NLO result of [16] with dσZM/dvdw, we
can write

lim
m→0

dσNLO
dvdw

=
dσZM
dvdw

(MI = MF = m) +
dσFSI
dvdw

(38)

with

dσFSI
dvdw

= ∆c1δ(1 − w) +∆c2

(
1

(1 − w)

)
+

+∆c3

(
ln(1 − w)
1 − w

)
+
+∆c5 ln v +∆c11. (39)

In [16] terms containing initial and final state singularities
have been subtracted using different factorization scales
MI and MF , respectively. Therefore, a separation of terms
proportional to ln(M2

I /s) (coefficient c̃11) and ln(M2
F /s)

(coefficient ˜̃c11) was possible. Starting from a calculation
with m �= 0, this separation can, of course, not be obtained
– both terms appear with the logarithm ln(m2/s). In our
formulas (33, 34) we have split this sum in two terms so
that they agree with c̃11 and ˜̃c11 in [16]. In [16] the MS
factorization scheme is defined with the spin averaging for
the incoming photons taken to be 1/2(1−ε) and not equal
to 1/2 as it is sometimes done. From our calculation we
conclude that the zero-mass limit of the massive theory
automatically yields the result for the MS scheme with
n-dimensional photon spin averaging. By comparing with
[16] we note that ˜̃c1 and ˜̃c2 originate from the final-state
logarithmic terms. The initial-state logarithms have no
factors proportional to δ(1−w) or 1/(1−w)+ and appear
only in c̃11, i.e. in the non-singular contribution for w → 1.
There are also no terms proportional to ln(µ2/s), where µ
is the renormalization scale, since αs is not renormalized
in first order.

Our derivation shows that the massive theory for γ +
γ → c/c̄+X in the limit m → 0 approaches the massless
theory in MS factorization with scales M2

I = M2
F = m2

only if the terms ∆c1, ∆c2,..., ∆c11 are removed. This
result is to be expected since the regularization of collinear
singularities with a mass parameterm does not necessarily
give identical results as with dimensional regularization
and m = 0 from the beginning. The difference is a sum of
finite terms, which have first been derived by calculating
the cross section for e++e− → c/c̄+X in the two theories
[10]. In [10] it was shown that the additional finite terms
can be interpreted as a partonic fragmentation function
dc

c(x, µ0) for the transition from massless to massive charm
quarks, c(m = 0) → c(m �= 0). The massless theory with
MS factorization has to be folded with dc

c(x, µ0) in order
to obtain the cross section in the zero-mass limit of the
massive theory. This partonic or perturbative FF in O(αs)
is

dc
c(x, µ0) =

CFαs

2π

[
1 + x2

1 − x

(
ln

µ20
m2 − 2 ln(1 − x) − 2

)]
+

.

(40)

One can show that the extra terms dσFSI/dvdw can be
recovered in the framework of the massless theory in [16]

by convoluting dc
c(x, µ0 = m) as a FF of the charm quark

with the massless LO cross section1:

dσFSI(pT )
dvdw

= lim
m→0

dσLO(p̂T = pT /x)
dvdw

⊗ dc
c (x, µ0 = m) .

(41)
This means that the ∆ci terms represent final-state inter-
actions which survive in the massive theory even in the
limit m → 0. Therefore we have labeled their sum with
the subscript “FSI”. They are non-singular, i.e. not pro-
portional to ln(m2/s).

In [9] the expression (40) was used as a starting con-
dition at the scale µ0 = m for the calculation of pertur-
bative FF’s at an arbitrary scale via the usual Altarelli-
Parisi evolution equations in the massless approach. Our
derivation shows that we obtain the same finite final-state
interaction terms as in e+e− → c/c̄ X. One expects that
they appear in any process for which cross sections in the
limit of the massive theory and the massless theory with
common factorization are compared in NLO. We remark
that such finite terms do not appear in connection with
initial state factorization, since the distribution of quarks
in the photon has identical non-singular terms for the two
cases where one considers the massless limit of the massive
theory and the theory with massless quarks.

The final result for the massless limit of the massive
theory, as given by (15) with the coefficients written down
in (16) to (37), can be used in two ways. On the one hand,
we can compare the cross section of the original massive
theory with the massless theory by calculating the cross
section from the full formula (8) together with (9), (10)
and (13) with the limit result in (15). In this way we can
establish how the additional terms proportional to m2 and
possibly m2 lnm2, i.e. all terms which vanish for m2 → 0,
depend on the kinematic variables. In particular, we can
find out, in which kinematical region, the massless limit in
(15) is a good approximation to the massive theory. Com-
pared to the massless cross section as derived in [16] the
cross section in (15) includes the finite final-state inter-
action terms ∆c1, ∆c2,..., ∆c11, and is computed for the
factorization scales M2

I = M2
F = m2. On the other hand,

it is clear that the massless approximation (15) is relevant
only for p2T � m2. In this case p2T is the large scale, so
that m2 is not a good choice for the factorization scale.
The appropriate choice is M2

I = M2
F = ξ

(
m2 + p2T

)
with

ξ = O(1). Thus it makes much more sense to compare the
two theories, massive and massless, for this choice of the
factorization scales. Then the large logarithms ∝ ln(s/m2)
are removed and absorbed in the PDF of the photon or
in the FF of the D∗ meson. These PDF’s and FF’s are in
NLO usually constructed in the MS factorization scheme
which we shall assume in the following. In order to estab-
lish the effect of terms proportional to m2 in this more
realistic case, we subtract the finite final-state interaction
terms ∆c1, ∆c2, ..., ∆c11 from the massive theory and
change the factorization scale in the massive theory to

1 The explicit form for this convolution and prescriptions for
the rescaling of the kinematic variables v and w can be found
in [15].
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M2
I = M2

F = ξ
(
m2 + p2T

)
by additionally subtracting

(
dσ

dvdw

)
subtr

= ˜̃c1 ln
m2

M2
F

δ(1 − w)

+˜̃c2 ln
m2

M2
F

1
(1 − w)+

+ c̃11 ln
m2

M2
I

+ ˜̃c11 ln
m2

M2
F

(42)

from the massive cross section above or equally from
the massless cross section in (15), which then is identical to
the result in [16]. Of course, the difference of the massive
and the massless approximation will be the same as in the
first case with m2 as factorization scale, only the relative
amount will change. It is clear that the two cross sections,
massive or massless, for M2

I = M2
F = ξ

(
m2 + p2T

)
must

be supplemented with a realistic choice for the c → D∗ FF
and with the additional single- and double-resolved cross
sections having a charm contribution in the photon PDF.
We remark that the latter approach makes sense only in
the NLO 4-flavour scheme whereas the first approach with
M2

I = M2
F = m2 is meaningful only in the NLO 3-flavour

scheme.

3 Numerical results

We start with presenting results for the pT distribution of
the cross section for

e+(p+) + e−(p−) → c(p3) +X . (43)

For this, we have to fold the cross section given in the pre-
vious section with the quasi-real photon spectrum given
in the Weizsäcker-Williams approximation by

fγ(x) =
α

2π

{
1 + (1 − x)2

x
ln

E2θ2c (1 − x)2 +m2
ex

2

m2
ex

2

+2(1 − x)
[

m2
ex

E2θ2c (1 − x)2 +m2
ex

2 − 1
x

]}
. (44)

Here E is the e+ (e−) beam energy, θc the maximal angle
under which the outgoing electrons (positrons) are tagged
and x = Eγ/E the fraction of the beam energy entering
the γγ cross section. Fixing the transverse momentum pT

of the charm quark and its rapidity y, one can perform the
integration over the energy fractions of the two photons
xi = Ei/E, i = 1, 2, with the result:

dσ

dpT dy
=

2pT

S

∫ V

V W

dv

v(1 − v)

∫ 1

V W/v

dw

w

fγ

(
x1 =

V W

vw

)
fγ

(
x2 =

1 − V

1 − v

)
dσ

dvdw

∣∣∣∣
s=x1x2S

,(45)

where

V = 1 −
√

p2T +m2

S
e−y , W =

1
V

√
p2T +m2

S
ey ,

S = 4E2 . (46)
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Fig. 1. a pT distribution dσ/dydpT for e+e− → γγ → c/c̄ +
X → D∗± + X (direct contribution, BR(c → D∗±) = 0.235)
at LO for y = 0 in the massless (full line) and the massive
calculation (dashed line) with m = 1.5 GeV; b ratio of the
massive and massless calculations

In the calculation with massive charm, the charm mass is
kept non-zero everywhere, also in the definition of kine-
matic variables and phase space limits. In particular, y

is the rapidity defined by y = 1
2 ln

Ec+pL,c

Ec−pL,c
. For the com-

parison between various versions of the NLO cross section
and their massless limits we consider the pT distribution
dσ/dydpT as a function of pT for y = 0. Since the cross
section as a function of y for fixed pT is maximal at y = 0
we expect a similar behavior for the cross section dσ/dpT

after integration over y.
In all the following comparisons the charm mass has

the value m = 1.5 GeV. The total energy is
√
S = 2E =

189 GeV and the maximal angle in (44) is θc = 0.033 in
accordance with the choice in the OPAL experiment [3].
The normalization of the cross section, as given by (45)
and (6) (or (14)) in the LO case is changed by multiplica-
tion with the branching ratio BR(c → D∗) = 0.235. This
value for BR is the average of the five experimental mea-
surements collected and discussed in [17] (BR = 0.235 ±
0.007(±0.007)). A more recent value for this branching
ratio based on measurements of the four LEP and the
SLD experiments is BR = 0.241 ± 0.008 [18]. The calcu-
lated cross sections are for the sum of c and c̄ production.
Including the branching ratio for c → D∗ in the cross
section will make it easier to compare the results for the
cross sections without explicit FF for c → D∗ with the
cross sections with FF included at the end of this section.
We should stress that the figures of this subsection do not
include the resolved contributions so that a comparison
with experimental data is not yet reasonable.

We start with the LO cross section calculated from (45)
with dσ/dvdw given in (6) and its limit for m = 0 in (14).
The result for the two cross sections dσ/dydpT for m �= 0
and m = 0, respectively, is shown in Fig. 1a. For large pT

the two cross sections approach each other. Their ratio,
dσ(m)/dydpT /dσ(m = 0)/dydpT , i.e. the massive over the
massless cross section, as a function of pT , is plotted in
Fig. 1b. As is seen in this figure, the deviation of the
massless from the massive cross section is appreciable at
small pT . The massless cross section increases strongly for
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Fig. 2. a pT distribution dσ/dydpT in the NLO 3-flavour
scheme (FSI-coefficients ∆ci added in the massless calculation,
direct contribution including BR(c → D∗±) = 0.235) for y = 0
in the massless (full line) and the massive calculation (dashed
line) for MI = MF = m; b ratio of the massive and massless
calculations

pT → 0, whereas the massive cross section increases only
moderately with decreasing pT , making the ratio smaller
than one. For pT > 5 GeV the massive cross section differs
by less than 10% from the massless cross section. In Fig.
1b the ratio crosses the line 0.9 at pT = 4.9 GeV.

In the next two figures, Fig. 2 and Fig. 3, we show
the same comparison including the full NLO corrections.
The value for αs is calculated from the two-loop formula
with Λ(Nf=4) = 328 MeV which corresponds to αs(mZ) =
0.1181 in accordance with [19]. The renormalization scale
is always µR =

√
p2T +m2 in all the results of this and

the following section.
In Fig. 2a the cross section dσ/dydpT at y = 0 is

shown in the NLO 3-flavour scheme. For m �= 0 this is the
full cross section with dσ/dvdw in (45) calculated from
(8-13). In the limit m → 0 we have added the final-state-
interaction coefficients ∆ci and changed the factorization
scales to MI = MF = m. Only with these changes, we can
expect that massive and massless cross sections approach
each other for large pT . This is indeed the case as seen in
Fig. 2a,b. If we compare with the LO cross section in Fig.
1a we notice that the NLO cross section is smaller than the
LO one, in particular for increasing pT , i.e. pT ≥ 3 GeV.
This reduction of the NLO 3-flavour cross section is due
to the choice of the factorization scale MI = MF = m,
which, of course, is the appropriate scale in the case of
fixed three flavours. This generates negative terms in the
NLO corrections which increase in absolute value with in-
creasing pT . These large correction terms proportional to
ln(m2/s) (see (15)) make the perturbative cross section
more and more unreliable, the larger pT is, and call for
a subtraction of these terms by choosing a factorization
scale determined by the large scale pT . The subtraction
terms originate predominantly from the collinear singu-
larities in the final state and, only to a smaller extent,
from the collinear singularities of the initial state (see (42)
for the separation of the two parts). We remark that we
used the same definition of αs in both schemes, i.e. we
took Nf = 4 and the same value for Λ(Nf=4) in the for-
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Fig. 3. a pT distribution dσ/dydpT in the NLO 4-flavour
scheme (FSI-coefficients ∆ci = 0 in the massless calculation
not resummed and subtracted in the massive calculation, di-
rect contribution including BR(c → D∗±) = 0.235) for y = 0
in the massless (full line) and the massive calculation (dashed
line) for MI = MF =

√
p2

T + m2; b ratio of the massive and
massless calculations

mula for αs, although, for consistency with the choice of
three flavours, we should have taken Nf = 3 and the cor-
responding value for Λ(Nf=3). This prescription will make
it easier to compare with the results in the NLO 4-flavour
scheme. The correct choice with Nf = 3 in αs would have
decreased the cross section shown in Fig. 2a by a few per
cent. The ratio of the massive to the massless cross sec-
tion in the NLO 3-flavour scheme is shown in Fig. 2b as a
function of pT . The approach towards unity with increas-
ing pT is slower than for the LO ratio in Fig. 1b. This is
presumably caused by additional terms ∝ m2 lnm2 which
are not present in LO. Now the ratio is ≥ 0.9 for pT ≥ 7.3
GeV, i.e. in the NLO 3-flavour scheme, larger values of pT

are required if the massless cross section should be a rea-
sonable approximation. Towards smaller pT the massless
cross section overestimates the full massive cross section
quite strongly as was already noticed in [8]. At pT = 2
GeV this overestimation amounts to approximately 85%.

The cross sections in the NLO 4-flavour scheme are
plotted in Fig. 3a, again for m �= 0 and m = 0. For
m �= 0 the cross section differs from the one shown in Fig.
2a by subtraction of the FSI-coefficients and by changing
the factorization scales to MI = MF =

√
p2T +m2, i.e.

we subtracted from the massive cross section (8-13) the
terms ∆ci and the logarithms (42). The massless cross
section is obtained from (15, 16-37) with ∆ci = 0, i.e. it is
identical to the results of [16]. We observe that the NLO
4-flavour cross section is larger than the NLO 3-flavour
cross section in Fig. 2a. About half of this difference is
due to the enlarged factorization scale; the other half is
due to the subtraction of the FSI-coefficients ∆ci. The in-
crease is most effective at the larger pT values. Without
additional fragmentation effects due to the c → D∗ tran-
sition the NLO 4-flavour scheme would thus lead to larger
cross sections than the NLO 3-flavour scheme. The ratio
of the massive and the massless cross section in the NLO
4-flavour scheme is presented in Fig. 3b. It is clear that
the difference between these two cross sections is equal to
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Fig. 4. As in Fig. 3, but including c → D∗ fragmentation
according to (40) (perturbative FF), i.e. FSI-terms resummed

the one in the NLO 3-flavour scheme shown in Fig. 2a, but
the ratio changes slightly. Now, the ratio is larger than 0.9
at pT = 6.5 GeV, i.e. at somewhat smaller pT than in the
NLO 3-flavour scheme (Fig. 2b).

It is clear that the results presented up to this point
can not be compared to experimental data as long as no
FF for the transition c → D∗ is included. This deficiency
is amended now for the cross section dσ(y = 0)/dydpT

shown in Fig. 4a and Fig. 5a with two different choices
of the FF. The cross sections in Fig. 4a, again for the
massive and the massless version, are the cross sections in
the NLO 4-flavour scheme augmented with the so called
perturbative fragmentation function (pFF) [10]. The pFF
is evolved via the Altarelli-Parisi equations to the appro-
priate scale with the initial condition at scale µ0 equal
to

Dc
c(x, µ0) = δ(1 − x) + dc

c(x, µ0) (47)

where dc
c(x, µ0) is given in (40) with the choice µ0 = m

as initial scale. This prescription amounts to taking into
account FSI terms not only at order O(αs), but to re-
sum them by virtue of the Altarelli-Parisi equations. The
normalization of the cross sections again includes the ex-
perimental branching ratio as in the previous figures. Such
a FF can be considered as a perturbative model for the
real FF which we can use instead of a calculation based
on non-perturbative methods. Alternatively, a FF can be
extracted from experimental data for the production of
D∗ mesons obtained from other measurements. The latter
approach will be discussed below. In Fig. 4a the pertur-
bative FF is applied equally to the massive and massless
cross sections. Through the Altarelli-Parisi evolution the
terms ∝ αs(µ) ln(MF /µ0) are resummed, which leads to
an appreciable reduction of the cross sections at large pT .
Comparing to the cross sections in Fig. 3a the reduction
amounts to a factor of more than two at pT = 12 GeV.
In the small-pT region the influence of the fragmentation
is largely reduced. The cross section with the pFF based
on the boundary condition (47) was used in the massless
approximation for a comparison with the massive NLO 3-
flavour theory in [9]. Comparing with Fig. 2a we see that
the two cross sections are approximately equal at pT � 5
GeV and the NLO 3-flavour scheme has a much larger
cross section than the ZM 4-flavour scheme at pT = 12

GeV in agreement with the results in Fig. 1a of [9]. The
difference at larger pT is due to the choice of scheme and
the effect of the evolution of the FF in the ZM 4-flavour
scheme. Of course, as in the previous figures the ZM cross
section approaches the massive one for large pT . The ra-
tio of the two cross sections with m �= 0 and m = 0 in
the NLO 4-flavour (pFF) approach is exhibited in Fig. 4b
showing that the ratio goes to one for large pT . The ratio
is larger than 0.9 for pT ≥ 5.6 GeV, i.e. the crossing point
occurs at a smaller pT than in the NLO 4-flavour cross
section without FF (see Fig. 3b).

The approach based on perturbative fragmentation
functions is, however, not sufficient to describe the frag-
mentation c → D∗. For example, in [20] it was shown that
in order to account for the inclusive production of D∗
mesons in e+e− annihilation at various center-of-mass en-
ergies an additional non-perturbative component is
needed. This means that the fragmentation of charm
quarks into D∗ mesons cannot be calculated in perturba-
tion theory. A non-perturbative component, which is not
known theoretically and has to be determined from other
data, is always needed. Hence, it is more appropriate, to
give up the perturbative component of the FF input alto-
gether and to describe the c → D∗ transition entirely by
a non-perturbative FF, as it is done for the fragmentation
of u, d and s quarks into light mesons. This approach has
been followed in [5]. There a non-perturbative FF for c →
D∗ was constructed by fitting data on e++ e− → D∗ +X
at the Z mass. For the fits two data sets from ALEPH [21]
and OPAL [22] have been used. Since these two data sets
are not compatible with each other, two separate fits have
been performed. In the following we shall employ the re-
sults obtained from the fit to the OPAL data [5]. LEP data
are best suited for such fits since they have a better accu-
racy as compared to lower energy data (see [5] for details).
However, with LEP data there is the additional compli-
cation that one has to separate two different sources of
charmed hadrons: in hadronic Z decays charmed hadrons
are expected to be produced either directly through the
hadronization of charmed quarks in the process Z → cc̄
or via weak decays of B hadrons produced in Z → bb̄
with approximately equal rate. With the data from [21,
22] it was possible to disentangle these two components
and to construct the FF for c → D∗ by determining the
FF at the starting scale µ0 = 2m. At this initial value the
charm-quark FF was assumed to have the Peterson form,
which is particularly suitable to describe FF’s that peak
at large x. The Peterson FF depends only on two parame-
ters, the normalization factor N and the shape parameter
ε. According to [5] the fit to the OPAL data gave in NLO
the values N = 0.267 and ε = 0.116 resulting in a branch-
ing ratio BR(c → D∗) = 0.238 at

√
S = mZ in good

agreement with the average value from [17,19].

Based on the purely non-perturbative FF of [5] (OPAL
set at NLO) we have calculated dσ/dηdpT at η = 0 for
massive and massless quarks as a function of pT . η is
the pseudo-rapidity which was used also in the analysis of
the experimental data [1–3] and we identify the pseudo-
rapidity of the D∗ with the rapidity of the charm quark.



298 G. Kramer, H. Spiesberger: Inclusive D∗ production in photon-photon collisions at next-to-leading order QCD

NLO-4(BKK)

y = 0

[pb=GeV]
d�

dydpT

pT [GeV]

121086420

10

1

0.1

0.01

0.001

NLO-4(BKK)

y = 0

d�(m)
dydpT

=d�(m=0)
dydpT

pT [GeV]

121086420

1.2

1

0.8

0.6

0.4

0.2

a b

Fig. 5. As in Fig. 3, but including c → D∗ fragmentation
according to [5] (set OPAL NLO)

The resulting cross sections, denoted NLO-4(BKK), are
shown for 2 GeV < pT < 12 GeV in Fig. 5a. The cross
section is smaller than the one in Fig. 4a. This results
essentially from the fact that the non-perturbative FF
peaks at a value x < 1, whereas the perturbative FF is
dominated by the contribution proportional to δ(1 − x).
For a given transverse momentum pT of the observed D∗,
smaller x in the FF probes larger p̂T = pT /x of the charm
quark in the underlying hard scattering process where the
cross section is smaller. The approach of the massive to
the massless cross section is even faster than in the pre-
vious studies. This is seen in Fig. 5b, where the ratio is
plotted. The ratio exceeds 0.9 already at pT = 4.7 GeV.
This stronger reduction of mass corrections is also due to
the different x-dependence of the fragmentation functions
since mass terms proportional to ∝ m2/p2T decrease faster
with increasing pT than the massless cross section.

In Fig. 6 we show how the NLO results in Figs. 2,
3, 4 and 5 are related to each other. For this purpose we
introduce a common normalization by dividing the results
of all four, massless and massive, cross sections by the
massless LO cross section (full curve in Fig. 1a). The full
lines in Fig. 6 represent the massless calculations for NLO-
4, NLO-3, NLO-4(pFF) and NLO-4(BKK). The dashed
curves correspond to the massive cross sections. Compared
to the LO massless cross section, the NLO corrections in
the NLO 4-flavour scheme produce an increase of the cross
section between 40% (low pT , massless) and 20% (large
pT ). The increase at low pT is compensated by mass effects
and at large pT by including the pFF so that the net effect
of NLO contributions in the range 3 GeV < pT < 12
GeV is a reduction between 30% and 50%. Most of the
reduction of the NLO 3-flavour result compared to the
NLO-4 curve originates from the different choice of the
factorization scale. At low pT , around pT � 2 GeV, the
massive cross sections are approximately equal to each
other. The inclusion of a fragmentation function leads to a
further reduction of the cross section which is particularly
strong for the case of the non-perturbative FF.

From this section we conclude that the corrections due
the finite charm mass are appreciable at low pT and are
small, i.e. below 10% for pT > 5 GeV. Furthermore, the
fragmentation corrections due to the evolution of the per-
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Fig. 6. pT distributions normalized to the result of the LO
massless calculation (full curve in Fig. 1a), dσ/dσLO(m = 0)
at y = 0. Full lines: massless calculations, dashed lines: mas-
sive calculation. From top to bottom: NLO 4-flavour scheme
with MI = MF =

√
p2

T + m2 (NLO-4); NLO 3-flavour scheme
with MI = MF = m (NLO-3); NLO 4-flavour scheme with
MI = MF =

√
p2

T + m2 including perturbative fragmen-
tation (NLO-4(pFF)); and NLO 4-flavour scheme with non-
perturbative fragmentation (NLO-4(BKK))

turbative FF are also large, but now in the large-pT re-
gion. For the non-perturbative FF there is also a reduction
at smaller pT due to the fact that in this case the hard
cross section is probed at considerably larger transverse
momenta of the charm quark. The approach of the mas-
sive theory towards the massless approximation is always
very fast. It is strongest for the theory with a realistic,
i.e. non-perturbative FF. For this case, at pT = 2 GeV,
the neglected mass terms lead to an overestimation of the
massive result of not more than 40%. It is also apparent,
that the pure NLO 3-flavour approach, i.e. without any
additional non-perturbative fragmentation corrections can
give a trustworthy prediction only for rather small pT , i.e.
for pT < 3 GeV. At higher pT the effect of evolution is
essential. But even at small pT , we find a reduction by a
factor 2 due to the non-perturbative FF, i.e. even at small
pT the NLO 4-flavour approach with perturbative FF does
not lead to a realistic prediction for the cross section.

4 Comparison with LEPII data

Experimental data for the differential cross section dσ/
dηdpT integrated over some fixed η region come from the
three LEP collaborations ALEPH, L3 and OPAL. The
ALEPH data [1] represent dσ/dpT integrated over −1.5 <

η < 1.5 and are averaged over the LEPII runs with
√
S
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in the interval 183 GeV <
√
S < 189 GeV. The most

recent L3 data [23] are integrated over |η| < 1.4 and av-
eraged over 183 GeV <

√
S < 209 GeV. The more recent

OPAL data (second in [3]) are integrated over |η| < 1.5
with the luminosity averaged

√
S = 193 GeV (183 GeV

<
√
S < 202 GeV). We compare the three data sets of [1,

3,23] with our calculation at
√
S = 189 GeV. Besides the

differing
√
S regions there are the slightly different regions

of the η integration and possibly different anti-tagging
conditions for the outgoing electrons and positrons. We
disregard these differences and put the data points of all
three experiments in one plot. We have checked that the
different |η|max chosen by L3 on one side and ALEPH
and OPAL on the other side change the cross section by
at most 7% which is much below the measurement er-
rors of the data points. Also the different values of

√
S

are not expected to change the cross section by more than
the corresponding experimental errors. As an example we
checked that increasing

√
S from 189 to 193 GeV increases

dσ/dpT by 2 (3)% at pT = 2 (12) GeV. The influence of
different anti-tagging conditions could not be investigated
because of insufficient information in the corresponding
references.

For the comparison with the experimental data we
need also the contributions of the single-resolved and
double-resolved channels. They are available only in the
massless approximation. Therefore we shall add the di-
rect cross section as calculated in the previous section (in
the massive and massless version) and the single-resolved
and double-resolved cross sections in the massless approx-
imation. For this we use the codes developed in [5] for
the calculation of the single-resolved and double-resolved
cross section for the process γγ → π± X. They were also
used in [24] and in the first reference of [5] for the process
γp → D∗± X. In all cases we shall use the BKK fragmen-
tation function as described in the previous section. We
choose as factorization scales MI = MF = ξ

√
p2T +m2

with ξ = 2. This allows us to calculate dσ/dpT down to
smaller pT than previously since the starting scale of the
non-perturbative FF of [5] was put equal to 2m.

The partition of dσ/dηdpT into direct and resolved
contributions, integrated over η in the region −1.5 < η <
1.5 is shown in Fig. 7. Here, DD, DR and RR denote
the direct, single-resolved and double-resolved cross sec-
tions in the massless approximation and in NLO, respec-
tively. At pT = 2 GeV, these three contributions amount
to approximately 38%, 21% and 41% of the total sum.
At pT = 12 GeV the relative contributions are 71%, 14%
and 15%, respectively. This means that the resolved cross
sections DR and RR decrease with increasing pT much
faster than the direct component DD. The separate con-
tributions depend strongly on the factorization scales: for
MI = MF =

√
p2T +m2, i.e. with ξ = 1, the direct con-

tribution is larger by roughly 10% for all pT , the single-
resolved contribution becomes steeper (with an increase
of 38% at pT = 2 GeV and 3% at pT = 12 GeV), whereas
the double-resolved contribution is much reduced (by 60%
at pT = 2 GeV and 30% at pT = 12 GeV ). We give these
numbers for completeness only, although the scale depen-

DR

RR
DD

total

j�j < 1:5

[pb=GeV]
d�
dpT

pT [GeV]

121086420
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0.001

Fig. 7. Direct and resolved contributions to the pT distri-
bution dσ/dpT after integration over |η| < 1.5 at NLO with
MI = MF = 2

√
p2

T + m2 including BKK-fragmentation. Up-
per long-dashed line: direct, dotted line: single-resolved, lower
short-dashed line: double-resolved contributions, full line: sum
of all contributions

dence of the separate contributions is unphysical. The
scale dependence of the physically observable cross sec-
tion is weak: for the sum of all contributions these changes
combine to a 13% decrease at pT = 2 GeV and a 1% in-
crease at pT = 12 GeV. The single-resolved cross section
has an appreciable component originating from the charm
PDF in the photon. It is equal to 15% at pT = 2 GeV
and equal to 61% at pT = 12 GeV. The double-resolved
cross section is due entirely to the charm component in
the photon. In Fig. 7 and the following figure the pho-
ton PDF is taken from [25], which has an explicit charm
contribution.

The sum of all three contributions, DD, DR and RR, is
compared to experimental data in Fig. 8. The full curve is
the cross section in the massless approximation as in Fig.
7. In the dashed curve the direct massless cross section is
replaced by the direct cross section with massive quarks,
i.e. NLO-4(BKK) of the previous section, except for the
change of factorization scales. The resolved components
are as in Fig. 7. The experimental data points shown at
pT values between 1.5 GeV and 8.5 GeV are from ALEPH
[1], L3 [23] and OPAL [3]. The overall agreement between
the theoretical prediction (dashed curve) and the experi-
mental data is quite good although the data points in the
medium pT range lie slightly above the theoretical curve.
Even if a finite charm mass correction for the DR and RR
contributions would be included, for which we expect a
reduction of the theoretical prediction by approximately
15% at pT = 2 GeV and less at higher pT , the overall
agreement for pT ≥ 2 GeV would hardly change. The



300 G. Kramer, H. Spiesberger: Inclusive D∗ production in photon-photon collisions at next-to-leading order QCD

NLO-4(BKK)+DR+RR

j�j < 1:5
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Fig. 8. pT distribution dσ/dpT after integration over |η| < 1.5
in the NLO 4-flavour scheme with MI = MF = 2

√
p2

T + m2

including BKK-fragmentation compared to LEP data [1,3,23].
Full line: massless calculation, dashed line: massive calculation.
Single- and double-resolved contributions are included using
photon PDFs of [25]

data from OPAL [3] and L3 [23] have been compared al-
ready with the predictions of the massless theory, which
was obtained on the basis of the work in [5]. Compared to
these results we neglected the fragmentation of the gluon
g → D∗. We checked that these contributions are very
small at small pT and amount to a contribution of ap-
proximately −1% at the largest pT , which is negligible
compared to the errors of the experimental data. This is
due to the fact that the gluon enters only at NLO and
that the g → D∗ FF is small compared to the dominant
charm FF. A similarly small effect results from a change
of the charm mass. Choosing m = 1.3 GeV increases the
cross section by 1% in the considered pT range between 2
GeV and 12 GeV.

5 Summary and conclusions

In this work we compared two approaches, the massive and
massless schemes, for the calculation of inclusive charm
production with 3 and 4 initial flavours. As a first step,
the cross section dσ/dpT is calculated for the direct com-
ponent of the γγ reaction in NLO. We found that the
massless limit of the massive cross section differs from
the massless theory with MS factorization by finite terms
which are non-singular for m → 0. A first sensible compar-
ison of the results of the massless theory with the massive
3-flavour approach can be performed after adding these
finite terms to the massless theory. The additional terms
can be interpreted as the order O(αs) coefficient of the

perturbative fragmentation function describing final-state
interactions of the transition from massless to massive
charm quarks. It is clear that a resummation of these
terms by using a perturbative fragmentation function is
not sufficient and that one needs a non-perturbative frag-
mentation function (in addition to a charm distribution
function in the photon). Since fragmentation and distri-
bution functions are usually constructed in MS factoriza-
tion, these terms must be subtracted also from the mas-
sive theory as soon as a fragmentation function, perturba-
tive or non-perturbative, is taken into account. Therefore
we studied the relation of this massive version with sub-
tracted FSI terms with the massless 4-flavour approach,
using different assumptions concerning the fragmentation
of the c quark into D∗ mesons.

It turned out that the massive versions converged
rather fast to their massless limits with increasing pT . The
convergence was strongest when using non-perturbative
FF fitted to e+e− annihilation data [5]. At low pT , for
example at pT = 3 GeV, the massive cross section is re-
duced by approximately 20% as compared to the massless
approximation. At lower energies this reduction increases
and makes the massless approximation unreliable. In ad-
dition the cross section is very much reduced by fragmen-
tation effects, even at low pT . This reduction increases
from a factor of more than 3 at pT = 2 GeV to a factor of
nearly 6 at pT = 12 GeV. Therefore, for reliable predic-
tions one needs a good description of the fragmentation
process. In our numerical evaluations we have taken the
FF from fits to D∗ production in e+e− annihilation at
LEPI. To compare with recent measurements of the in-
clusive D∗ cross section dσ/dpT in γγ reactions at LEPII
we added the single- and double-resolved cross sections,
which up to now are available to us only in the massless
approximation. The agreement of the calculations and the
data is quite good down to pT � 1.5 GeV even if we as-
sume that the massless resolved contributions are reduced
by a similar amount as the direct cross section. It remains
to be seen whether a fit using additional experimental data
to obtain a modified fragmentation function would lead to
a better agreement. The fact that the data at medium pT

lie somewhat above the theoretical predictions seem to in-
dicate that a fragmentation function which is harder than
the one we used in our analysis, could be favored.

It is clear that in order to obtain results at even smaller
pT the finite charm mass corrections must be calculated
also for the single- and double-resolved cross sections.
Their knowledge would also be a prerequisite for the cal-
culation of the total D∗ production cross section.
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